- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ferdous, SM (2)
-
Barik, Reet (1)
-
Cappa, Wade (1)
-
Halappanavar, Mahantesh (1)
-
Kalyanaraman, Ananth (1)
-
Khan, Arif (1)
-
Minutoli, Marco (1)
-
Pothen, Alex (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Khan, Arif; Pothen, Alex; Ferdous, SM (, 2018 IEEE International Parallel and Distributed Processing Symposium)We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the b-edgecover problem. A b-edgecover of minimum weight in a graph is a subset $$C$$ of its edges such that at least a specified number $b(v)$ of edges in $$C$$ is incident on each vertex $$v$$, and the sum of the edge weights in $$C$$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$-approximation guarantees in the worst-case for this problem, but these algorithms have limited parallelism. Hence we design two new $$2$$-approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a b-edgecover to that of finding a b'-matching, by exploiting the relationship between these subgraphs in an approximation context. The LSE-NW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSE-NW algorithms compute the same b-edgecover with at most twice the weight of the minimum weight edge cover. In practice, the $$2$$-approximation and $3/2$-approximation algorithms compute edge covers of weight within $$10\%$$ the optimal. We implement three of the approximation algorithms, MCE, LSE, and LSE-NW on shared memory multi-core machines, including an Intel Xeon and an IBM Power8 machine with 8 TB memory. The MCE algorithm is the fastest of these by an order of magnitude or more. It computes an edge cover in a graph with billions of edges in $20$ seconds using two hundred threads on the IBM Power8. We also show that the parallel depth and work can be bounded for the Suitor and b-Suitor algorithms when edge weights are random.more » « less
An official website of the United States government
