skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferdous, SM"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the b-edgecover problem. A b-edgecover of minimum weight in a graph is a subset $$C$$ of its edges such that at least a specified number $b(v)$ of edges in $$C$$ is incident on each vertex $$v$$, and the sum of the edge weights in $$C$$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$-approximation guarantees in the worst-case for this problem, but these algorithms have limited parallelism. Hence we design two new $$2$$-approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a b-edgecover to that of finding a b'-matching, by exploiting the relationship between these subgraphs in an approximation context. The LSE-NW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSE-NW algorithms compute the same b-edgecover with at most twice the weight of the minimum weight edge cover. In practice, the $$2$$-approximation and $3/2$-approximation algorithms compute edge covers of weight within $$10\%$$ the optimal. We implement three of the approximation algorithms, MCE, LSE, and LSE-NW on shared memory multi-core machines, including an Intel Xeon and an IBM Power8 machine with 8 TB memory. The MCE algorithm is the fastest of these by an order of magnitude or more. It computes an edge cover in a graph with billions of edges in $20$ seconds using two hundred threads on the IBM Power8. We also show that the parallel depth and work can be bounded for the Suitor and b-Suitor algorithms when edge weights are random. 
    more » « less